• Witaj na Forum Arduino Polska! Zapraszamy do rejestracji!
  • Znajdziesz tutaj wiele informacji na temat hardware / software.
Witaj! Logowanie Rejestracja


Ocena wątku:
  • 0 głosów - średnia: 0
  • 1
  • 2
  • 3
  • 4
  • 5
RTC DS1302
#1
cześć, posiadam Arduino Uno z Arduino Uno 1602 Keypad Shield podłączyłem do niego RTC 1302 na pinach 11,12,13.

Pytanie 1:
Jak rozumiem RTC powinien odliczać czas a Arduino powinien go pobierać, oznacza to że jeśli Adruino odłączymy od zasilania to zegar będzie działał i po ponownym podłączeniu zasialania do arduino pobierze on aktualny czas.

- zakładam że tak jest, więc:

Pytanie 2:
W jaki sposób ustawić czas? Znalazłem kawałek doku źródłowego wykonującego z mojego zestawu zegar. Rzecz synchronizuje się i działa jednak pokazuje datę początkową: 00:00:00 01.01.2000

Znalazłem kod źródłowy pozwalający na ustawienie czasu - i mogę ustawić czas, po resecie zegar zaczyna działać, jednak po odłączeniu zasilania i ponownym uruchomieniu czas znowu jest zerowy.



kod źródłowy zegara:

// Timur Maksiomv 2014
//
// A quick demo of how to use DS1302-library to make a quick
// clock using a DS1302 and a 16x2 LCD.
//
// I assume you know how to connect the DS1302 and LCD.
// DS1302:  CE pin    -> Arduino Digital 27
//          I/O pin  -> Arduino Digital 29
//          SCLK pin  -> Arduino Digital 31
//          VCC pin  -> Arduino Digital 33
//          GND pin  -> Arduino Digital 35
//
// LCD:    DB7      -> Arduino Digital 7
//          DB6      -> Arduino Digital 6
//          DB5      -> Arduino Digital 5
//          DB4      -> Arduino Digital 4
//          E        -> Arduino Digital 9
//          RS        -> Arduino Digital 8

#include <LiquidCrystal.h>

#include <DS1302RTC.h>
#include <Time.h>

// Init the DS1302
// Set pins:  CE, IO,CLK
DS1302RTC RTC(11, 12, 13);

// Optional connection for RTC module/
//#define DS1302_GND_PIN 33
//#define DS1302_VCC_PIN 35

// Init the LCD
//  initialize the library with the numbers of the interface pins
//            lcd(RS,  E, d4, d5, d6, d7)
LiquidCrystal lcd(8,  9,  4,  5,  6,  7);

void setup()
{
  // Setup LCD to 16x2 characters
  lcd.begin(16, 2);

  // Activate RTC module
//  digitalWrite(DS1302_GND_PIN, LOW);
//  pinMode(DS1302_GND_PIN, OUTPUT);

//  digitalWrite(DS1302_VCC_PIN, HIGH);
//  pinMode(DS1302_VCC_PIN, OUTPUT);

  lcd.print("RTC activated");

  delay(500);

  // Check clock oscillation 
  lcd.clear();
  if (RTC.haltRTC())
    lcd.print("Clock stopped!");
  else
    lcd.print("Clock working.");

  // Check write-protection
  lcd.setCursor(0,1);
  if (RTC.writeEN())
    lcd.print("Write allowed.");
  else
    lcd.print("Write protected.");

  delay ( 2000 );

//  setTime(22,39,00,29,8,2019);
//  RTC.set(22,39,00,29,7,8,2019);
//  RTC.write;
//  RTC.writeEN;
//  RTC.setTime(23, 9, 0);    // Set the time to 12:00:00 (24hr format)
//  RTC.setDate(8, 29, 2014);  // Set the date to January 1st, 2014
//  RTC.write;

 
  // Setup Time library 
  lcd.clear();
  lcd.print("RTC Sync");
  setSyncProvider(RTC.get); // the function to get the time from the RTC
  if(timeStatus() == timeSet)
    lcd.print(" Ok!");
  else
    lcd.print(" FAIL!");

  delay ( 2000 );

  lcd.clear();
}

void loop()
{

  // Display time centered on the upper line
  lcd.setCursor(4, 0);
  print2digits(hour());
  lcd.print(":");
  print2digits(minute());
  lcd.print(":");
  print2digits(second());

  // Display abbreviated Day-of-Week in the lower left corner
  lcd.setCursor(0, 1);
  lcd.print(dayShortStr(weekday()));

  // Display date in the lower right corner
  lcd.setCursor(5, 1);
  lcd.print(" ");
  print2digits(day());
  lcd.print("/");
  print2digits(month());
  lcd.print("/");
  lcd.print(year());

  // Warning!
  if(timeStatus() != timeSet) {
    lcd.setCursor(0, 1);
    lcd.print(F("RTC ERROR: SYNC!"));
  }

  delay ( 1000 ); // Wait approx 1 sec
}

void print2digits(int number) {
  // Output leading zero
  if (number >= 0 && number < 10) {
    lcd.write('0');
  }
  lcd.print(number);
}



kod źródłowy do ustawiania czasu:

// DS1302 RTC
// ----------
//
// Open Source / Public Domain
//
// Version 1
//    By arduino.cc user "Krodal".
//    June 2012
//    Using Arduino 1.0.1
// Version 2
//    By arduino.cc user "Krodal"
//    March 2013
//    Using Arduino 1.0.3, 1.5.2
//    The code is no longer compatible with older versions.
//    Added bcd2bin, bin2bcd_h, bin2bcd_l
//    A few minor changes.
//
//
// Documentation: datasheet
//
// The DS1302 uses a 3-wire interface:
//    - bidirectional data.
//    - clock
//    - chip select
// It is not I2C, not OneWire, and not SPI.
// So the standard libraries can not be used.
// Even the shiftOut() function is not used, since it
// could be too fast (it might be slow enough,
// but that's not certain).
//
// I wrote my own interface code according to the datasheet.
// Any three pins of the Arduino can be used.
//  See the first defines below this comment,
//  to set your own pins.
//
// The "Chip Enable" pin was called "/Reset" before.
//
// The chip has internal pull-down registers.
// This keeps the chip disabled, even if the pins of
// the Arduino are floating.
//
//
// Range
// -----
//      seconds : 00-59
//      minutes : 00-59
//      hour    : 1-12 or 0-23
//      date    : 1-31
//      month  : 1-12
//      day    : 1-7
//      year    : 00-99
//
//
// Burst mode
// ----------
// In burst mode, all the clock data is read at once.
// This is to prevent a rollover of a digit during reading.
// The read data is from an internal buffer.
//
// The burst registers are commands, rather than addresses.
// Clock Data Read in Burst Mode
//    Start by writing 0xBF (as the address),
//    after that: read clock data
// Clock Data Write in Burst Mode
//    Start by writing 0xBE (as the address),
//    after that: write clock data
// Ram Data Read in Burst Mode
//    Start by writing 0xFF (as the address),
//    after that: read ram data
// Ram Data Write in Burst Mode
//    Start by writing 0xFE (as the address),
//    after that: write ram data
//
//
// Ram
// ---
// The DS1302 has 31 of ram, which can be used to store data.
// The contents will be lost if the Arduino is off,
// and the backup battery gets empty.
// It is better to store data in the EEPROM of the Arduino.
// The burst read or burst write for ram is not implemented
// in this code.
//
//
// Trickle charge
// --------------
// The DS1302 has a build-in trickle charger.
// That can be used for example with a lithium battery
// or a supercap.
// Using the trickle charger has not been implemented
// in this code.
//


// Set your own pins with these defines !
#define DS1302_SCLK_PIN  13    // Arduino pin for the Serial Clock
#define DS1302_IO_PIN    12    // Arduino pin for the Data I/O
#define DS1302_CE_PIN    11    // Arduino pin for the Chip Enable


// Macros to convert the bcd values of the registers to normal
// integer variables.
// The code uses separate variables for the high byte and the low byte
// of the bcd, so these macros handle both bytes separately.
#define bcd2bin(h,l)    (((h)*10) + (l))
#define bin2bcd_h(x)  ((x)/10)
#define bin2bcd_l(x)    ((x)%10)


// Register names.
// Since the highest bit is always '1',
// the registers start at 0x80
// If the register is read, the lowest bit should be '1'.
#define DS1302_SECONDS          0x80
#define DS1302_MINUTES          0x82
#define DS1302_HOURS            0x84
#define DS1302_DATE              0x86
#define DS1302_MONTH            0x88
#define DS1302_DAY              0x8A
#define DS1302_YEAR              0x8C
#define DS1302_ENABLE            0x8E
#define DS1302_TRICKLE          0x90
#define DS1302_CLOCK_BURST      0xBE
#define DS1302_CLOCK_BURST_WRITE 0xBE
#define DS1302_CLOCK_BURST_READ  0xBF
#define DS1302_RAMSTART          0xC0
#define DS1302_RAMEND            0xFC
#define DS1302_RAM_BURST        0xFE
#define DS1302_RAM_BURST_WRITE  0xFE
#define DS1302_RAM_BURST_READ    0xFF



// Defines for the bits, to be able to change
// between bit number and binary definition.
// By using the bit number, using the DS1302
// is like programming an AVR microcontroller.
// But instead of using "(1<<X)", or "_BV(X)",
// the Arduino "bit(X)" is used.
#define DS1302_D0 0
#define DS1302_D1 1
#define DS1302_D2 2
#define DS1302_D3 3
#define DS1302_D4 4
#define DS1302_D5 5
#define DS1302_D6 6
#define DS1302_D7 7


// Bit for reading (bit in address)
#define DS1302_READBIT DS1302_D0 // READBIT=1: read instruction

// Bit for clock (0) or ram (1) area,
// called R/C-bit (bit in address)
#define DS1302_RC DS1302_D6

// Seconds Register
#define DS1302_CH DS1302_D7  // 1 = Clock Halt, 0 = start

// Hour Register
#define DS1302_AM_PM DS1302_D5 // 0 = AM, 1 = PM
#define DS1302_12_24 DS1302_D7 // 0 = 24 hour, 1 = 12 hour

// Enable Register
#define DS1302_WP DS1302_D7  // 1 = Write Protect, 0 = enabled

// Trickle Register
#define DS1302_ROUT0 DS1302_D0
#define DS1302_ROUT1 DS1302_D1
#define DS1302_DS0  DS1302_D2
#define DS1302_DS1  DS1302_D2
#define DS1302_TCS0  DS1302_D4
#define DS1302_TCS1  DS1302_D5
#define DS1302_TCS2  DS1302_D6
#define DS1302_TCS3  DS1302_D7


// Structure for the first 8 registers.
// These 8 bytes can be read at once with
// the 'clock burst' command.
// Note that this structure contains an anonymous union.
// It might cause a problem on other compilers.
typedef struct ds1302_struct
{
  uint8_t Seconds:4;      // low decimal digit 0-9
  uint8_t Seconds10:3;    // high decimal digit 0-5
  uint8_t CH:1;          // CH = Clock Halt
  uint8_t Minutes:4;
  uint8_t Minutes10:3;
  uint8_t reserved1:1;
  union
  {
    struct
    {
      uint8_t Hour:4;
      uint8_t Hour10:2;
      uint8_t reserved2:1;
      uint8_t hour_12_24:1; // 0 for 24 hour format
    } h24;
    struct
    {
      uint8_t Hour:4;
      uint8_t Hour10:1;
      uint8_t AM_PM:1;      // 0 for AM, 1 for PM
      uint8_t reserved2:1;
      uint8_t hour_12_24:1; // 1 for 12 hour format
    } h12;
  };
  uint8_t Date:4;          // Day of month, 1 = first day
  uint8_t Date10:2;
  uint8_t reserved3:2;
  uint8_t Month:4;          // Month, 1 = January
  uint8_t Month10:1;
  uint8_t reserved4:3;
  uint8_t Day:3;            // Day of week, 1 = first day (any day)
  uint8_t reserved5:5;
  uint8_t Year:4;          // Year, 0 = year 2000
  uint8_t Year10:4;
  uint8_t reserved6:7;
  uint8_t WP:1;            // WP = Write Protect
};


void setup()
{     
  ds1302_struct rtc;


  Serial.begin(9600);
  Serial.println(F("DS1302 Real Time Clock"));
  Serial.println(F("Version 2, March 2013"));


  // Start by clearing the Write Protect bit
  // Otherwise the clock data cannot be written
  // The whole register is written,
  // but the WP-bit is the only bit in that register.
  DS1302_write (DS1302_ENABLE, 0);

  // Disable Trickle Charger.
  DS1302_write (DS1302_TRICKLE, 0x00);

// Remove the next define,
// after the right date and time are set.
#define SET_DATE_TIME_JUST_ONCE
#ifdef SET_DATE_TIME_JUST_ONCE 

  // Fill these variables with the date and time.
  int seconds, minutes, hours, dayofweek, dayofmonth, month, year;

  // Example for april 15, 2013, 10:08, monday is 2nd day of Week.
  // Set your own time and date in these variables.
  seconds    = 0;
  minutes    = 00;
  hours      = 21;
  dayofweek  = 7;  // Day of week, any day can be first, counts 1...7
  dayofmonth = 7; // Day of month, 1...31
  month      = 9;  // month 1...12
  year      = 2019;

  // Set a time and date
  // This also clears the CH (Clock Halt) bit,
  // to start the clock.

  // Fill the structure with zeros to make
  // any unused bits zero
  memset ((char *) &rtc, 0, sizeof(rtc));

  rtc.Seconds    = bin2bcd_l( seconds);
  rtc.Seconds10  = bin2bcd_h( seconds);
  rtc.CH        = 0;      // 1 for Clock Halt, 0 to run;
  rtc.Minutes    = bin2bcd_l( minutes);
  rtc.Minutes10  = bin2bcd_h( minutes);
  // To use the 12 hour format,
  // use it like these four lines:
  //    rtc.h12.Hour  = bin2bcd_l( hours);
  //    rtc.h12.Hour10 = bin2bcd_h( hours);
  //    rtc.h12.AM_PM  = 0;    // AM = 0
  //    rtc.h12.hour_12_24 = 1; // 1 for 24 hour format
  rtc.h24.Hour  = bin2bcd_l( hours);
  rtc.h24.Hour10 = bin2bcd_h( hours);
  rtc.h24.hour_12_24 = 0; // 0 for 24 hour format
  rtc.Date      = bin2bcd_l( dayofmonth);
  rtc.Date10    = bin2bcd_h( dayofmonth);
  rtc.Month      = bin2bcd_l( month);
  rtc.Month10    = bin2bcd_h( month);
  rtc.Day        = dayofweek;
  rtc.Year      = bin2bcd_l( year - 2000);
  rtc.Year10    = bin2bcd_h( year - 2000);
  rtc.WP = 0; 

  // Write all clock data at once (burst mode).
  DS1302_clock_burst_write( (uint8_t *) &rtc);
#endif
}


void loop()
{
  ds1302_struct rtc;
  char buffer[80];    // the code uses 70 characters.

  // Read all clock data at once (burst mode).
  DS1302_clock_burst_read( (uint8_t *) &rtc);

  sprintf( buffer, "Time = %02d:%02d:%02d, ", \
    bcd2bin( rtc.h24.Hour10, rtc.h24.Hour), \
    bcd2bin( rtc.Minutes10, rtc.Minutes), \
    bcd2bin( rtc.Seconds10, rtc.Seconds));
  Serial.print(buffer);

  sprintf(buffer, "Date(day of month) = %d, Month = %d, " \
    "Day(day of week) = %d, Year = %d", \
    bcd2bin( rtc.Date10, rtc.Date), \
    bcd2bin( rtc.Month10, rtc.Month), \
    rtc.Day, \
    2000 + bcd2bin( rtc.Year10, rtc.Year));
  Serial.println( buffer);

  delay( 5000);
}


// --------------------------------------------------------
// DS1302_clock_burst_read
//
// This function reads 8 bytes clock data in burst mode
// from the DS1302.
//
// This function may be called as the first function,
// also the pinMode is set.
//
void DS1302_clock_burst_read( uint8_t *p)
{
  int i;

  _DS1302_start();

  // Instead of the address,
  // the CLOCK_BURST_READ command is issued
  // the I/O-line is released for the data
  _DS1302_togglewrite( DS1302_CLOCK_BURST_READ, true); 

  for( i=0; i<8; i++)
  {
    *p++ = _DS1302_toggleread();
  }
  _DS1302_stop();
}


// --------------------------------------------------------
// DS1302_clock_burst_write
//
// This function writes 8 bytes clock data in burst mode
// to the DS1302.
//
// This function may be called as the first function,
// also the pinMode is set.
//
void DS1302_clock_burst_write( uint8_t *p)
{
  int i;

  _DS1302_start();

  // Instead of the address,
  // the CLOCK_BURST_WRITE command is issued.
  // the I/O-line is not released
  _DS1302_togglewrite( DS1302_CLOCK_BURST_WRITE, false); 

  for( i=0; i<8; i++)
  {
    // the I/O-line is not released
    _DS1302_togglewrite( *p++, false); 
  }
  _DS1302_stop();
}


// --------------------------------------------------------
// DS1302_read
//
// This function reads a byte from the DS1302
// (clock or ram).
//
// The address could be like "0x80" or "0x81",
// the lowest bit is set anyway.
//
// This function may be called as the first function,
// also the pinMode is set.
//
uint8_t DS1302_read(int address)
{
  uint8_t data;

  // set lowest bit (read bit) in address
  bitSet( address, DS1302_READBIT); 

  _DS1302_start();
  // the I/O-line is released for the data
  _DS1302_togglewrite( address, true); 
  data = _DS1302_toggleread();
  _DS1302_stop();

  return (data);
}


// --------------------------------------------------------
// DS1302_write
//
// This function writes a byte to the DS1302 (clock or ram).
//
// The address could be like "0x80" or "0x81",
// the lowest bit is cleared anyway.
//
// This function may be called as the first function,
// also the pinMode is set.
//
void DS1302_write( int address, uint8_t data)
{
  // clear lowest bit (read bit) in address
  bitClear( address, DS1302_READBIT); 

  _DS1302_start();
  // don't release the I/O-line
  _DS1302_togglewrite( address, false);
  // don't release the I/O-line
  _DS1302_togglewrite( data, false);
  _DS1302_stop(); 
}


// --------------------------------------------------------
// _DS1302_start
//
// A helper function to setup the start condition.
//
// An 'init' function is not used.
// But now the pinMode is set every time.
// That's not a big deal, and it's valid.
// At startup, the pins of the Arduino are high impedance.
// Since the DS1302 has pull-down resistors,
// the signals are low (inactive) until the DS1302 is used.
void _DS1302_start( void)
{
  digitalWrite( DS1302_CE_PIN, LOW); // default, not enabled
  pinMode( DS1302_CE_PIN, OUTPUT); 

  digitalWrite( DS1302_SCLK_PIN, LOW); // default, clock low
  pinMode( DS1302_SCLK_PIN, OUTPUT);

  pinMode( DS1302_IO_PIN, OUTPUT);

  digitalWrite( DS1302_CE_PIN, HIGH); // start the session
  delayMicroseconds( 4);          // tCC = 4us
}


// --------------------------------------------------------
// _DS1302_stop
//
// A helper function to finish the communication.
//
void _DS1302_stop(void)
{
  // Set CE low
  digitalWrite( DS1302_CE_PIN, LOW);

  delayMicroseconds( 4);          // tCWH = 4us
}


// --------------------------------------------------------
// _DS1302_toggleread
//
// A helper function for reading a byte with bit toggle
//
// This function assumes that the SCLK is still high.
//
uint8_t _DS1302_toggleread( void)
{
  uint8_t i, data;

  data = 0;
  for( i = 0; i <= 7; i++)
  {
    // Issue a clock pulse for the next databit.
    // If the 'togglewrite' function was used before
    // this function, the SCLK is already high.
    digitalWrite( DS1302_SCLK_PIN, HIGH);
    delayMicroseconds( 1);

    // Clock down, data is ready after some time.
    digitalWrite( DS1302_SCLK_PIN, LOW);
    delayMicroseconds( 1);        // tCL=1000ns, tCDD=800ns

    // read bit, and set it in place in 'data' variable
    bitWrite( data, i, digitalRead( DS1302_IO_PIN));
  }
  return( data);
}


// --------------------------------------------------------
// _DS1302_togglewrite
//
// A helper function for writing a byte with bit toggle
//
// The 'release' parameter is for a read after this write.
// It will release the I/O-line and will keep the SCLK high.
//
void _DS1302_togglewrite( uint8_t data, uint8_t release)
{
  int i;

  for( i = 0; i <= 7; i++)
  {
    // set a bit of the data on the I/O-line
    digitalWrite( DS1302_IO_PIN, bitRead(data, i)); 
    delayMicroseconds( 1);    // tDC = 200ns

    // clock up, data is read by DS1302
    digitalWrite( DS1302_SCLK_PIN, HIGH);   
    delayMicroseconds( 1);    // tCH = 1000ns, tCDH = 800ns

    if( release && i == 7)
    {
      // If this write is followed by a read,
      // the I/O-line should be released after
      // the last bit, before the clock line is made low.
      // This is according the datasheet.
      // I have seen other programs that don't release
      // the I/O-line at this moment,
      // and that could cause a shortcut spike
      // on the I/O-line.
      pinMode( DS1302_IO_PIN, INPUT);

      // For Arduino 1.0.3, removing the pull-up is no longer needed.
      // Setting the pin as 'INPUT' will already remove the pull-up.
      // digitalWrite (DS1302_IO, LOW); // remove any pull-up 
    }
    else
    {
      digitalWrite( DS1302_SCLK_PIN, LOW);
      delayMicroseconds( 1);      // tCL=1000ns, tCDD=800ns
    }
  }
}




Proszę o odpowidź jak działa ten RTC - może czegoś nie wiem.
Ewentualnie proszę o wskazanie rozwiązania jak zrobić tak aby zegar trzymał czas po odłączeniu zasialania. Moduł RTC naturalnie posiada własną bateryjkę.

z góry dziękuję za pomoc
 
Odpowiedź
#2
Jaki to układ RTC zamówiłeś ? Bo jeśli z chin, to jest tam błąd przez który rozwala sie bateryjka i nie ma opcji trzymania godziny po zaniku napięcia
 
Odpowiedź
#3
Cytat:Bo jeśli z chin, to jest tam błąd przez który rozwala sie bateryjka
Może tam masz akumulatorek li-ion przyjrzyj się dokładnie ,który jest ładowani i nie wolno tam wkładać baterii .

Wystarczy zostawić podłączony na jakiś czas by się naładował ,jest też gdzieś w internecie informacja którą ścieżkę przeciąć by nie ładowało i można dać zwykłą baterię .
 
Odpowiedź
#4
Jeśli chodzi o podtrzymanie czasu to najpierw ustal jaki masz moduł, ewentualnie miernik w rączki, wyjmij baterię i sprawdź połączenia:
   
VCC1 i VCC2 nie powinno być połączone, nawet jeśli zasilisz moduł do pinu VCC na pinach baterii nie powinno być napięcia, jeśli jest napięcie bateria zostanie zniszczona. Dla akumulatorka powinien być układ ładowania zapewniający napięcie nie wyższe niż 4.2V.
Z kolei z włożoną baterią bez zasilania modułu na pinie VCC2 powinno być napięcie powyżej 2V podawane z baterii.
Ten sposób ustawienia czasu nie będzie dokładny, opóźnienia w czasie wgrywania są różne za każdym razem, najlepiej zrobić to używając UART. Przykład masz w bibliotece do DS3231 w szkicu rtc_ds3231.ino, kawałek funkcji:
Kod:
void parse_cmd(char *cmd, int cmdsize)
{
    uint8_t i;
    uint8_t reg_val;
    char buff[BUFF_MAX];
    struct ts t;

    //snprintf(buff, BUFF_MAX, "cmd was '%s' %d\n", cmd, cmdsize);
    //Serial.print(buff);

    void parse_cmd(char *cmd, int cmdsize)
{
    uint8_t i;
    uint8_t reg_val;
    char buff[BUFF_MAX];
    struct ts t;

    //snprintf(buff, BUFF_MAX, "cmd was '%s' %d\n", cmd, cmdsize);
    //Serial.print(buff);

    // TssmmhhWDDMMYYYY aka set time
    if (cmd[0] == 84 && cmdsize == 16) {
        //T355720619112011
        t.sec = inp2toi(cmd, 1);
        t.min = inp2toi(cmd, 3);
    if (cmd[0] == 84 && cmdsize == 16) {
        //T355720619112011
        t.sec = inp2toi(cmd, 1);
        t.min = inp2toi(cmd, 3);
...
Wysyłasz z monitora linijkę z czasem w formacie podanym w szkicu: "// TssmmhhWDDMMYYYY aka set time" i ustawisz czas z dokładnością poniżej 1s. W funkcji trzeba podmienić zmienne na format używany w tej innej bibliotece - trzeba rozgryźć co do czego.

A używając ustawienia czasu w setup pamiętaj, że za każdym razem szkic uruchamiając się od nowa ustawi czas zapisany we flash, w kodzie Arduino. Trzeba wgrać raz, ustawić czas, po czym od razu wgrać szkic kolejny, który korzysta tylko z odczytu czasu. Inaczej po każdym resecie czas również się zresetuje gdy uruchomisz szkic od nowa odłączając zasilanie czy robiąc reset przyciskiem.
No i jednak polecam moduł DS3231, wszystko masz na płytce i czas znacznie dokładniej jest odmierzany.
   
Jeśli oczywiście problemem nie jest to, że ten jest na I2C.
 
Odpowiedź
#5
Po wymianie baterii wszystko zadziałało. Dziękuję za pomoc.
 
Odpowiedź
  


Skocz do:


Przeglądający: 1 gości